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Two- and three-dimensional non-stationary viscous-fluid flows in a plane channel are 
considered. By means of efficient computational algorithms for direct integration of 
the incompressible Navier-Stokes equations the evolution of these flows over large 
time intervals is simulated. Classes of two- and three-dimensional non-stationary 
flows with stationary integral characteristics (the flow rate, mean pressure gradient, 
total energy of pulsations etc.) were found. Such flows are called secondary flows. 
Two-dimensional secondary flows have only qualitative similarity to turbulent flows 
observed in experiments. Three-dimensional secondary flows agree very well, even 
quantitatively, with turbulent flows. The principal characteristics of turbulent flows 
such as drag coefficient, mean-velocity profile, the distributions of the pulsation 
velocity components and some others are reproduced in three-dimensional secondary 
flows with good accuracy. 

1. Introduction 
The behaviour of infinitesimal disturbances of plane Poiseuille flow has been 

investigated reasonably well (see e.g. Betchov & Criminale 1967 ; Drazin & Reid 1981). 
Problems concerning the evolution of finite-amplitude disturbances and more 
generally on the theory of nonlinear hydrodynamical stability have been studied far 
less exhaustively. A considerable number of works have been devoted to this problem. 
A survey of these works may be found in Stuart (1971), Shkadov (1973a), Stewartson 
(1974), Joseph (1976)) Coldshtick & Stern (1977), Orszag & Kells (1980) and Herbert 
fJ983). 

Investigations presented in this paper can also be considered as studies of the 
evolution of finite-amplitude disturbances. However, our principal task is search for 
stable unsteady secondary flows, to examine and to compare them with experiment. 

Usually two formulations of the problem of the evolution of incompressible viscous 
fluid flows in an infinite channel or pipe are applied. The first formulation assumes 
constancy of flux, while the second one assumes constancy of the space-averaged 
pressure gradient. 

These two types of flow are characterized by different Reynolds numbers, usually 
denoted by the same symbol. Therefore comparison of the results obtained in the 
two different problem formulations a t  the same value of these Reynolds numbers 
leads to wrong conclusions. Let us briefly discuss this general question.? 

t Some remarks on this question may be found also in Stuart (1960). 
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The flow in a plane channel is usually characterized by the Reynolds number 

U L  R = -  
V 

where U is the maximum fluid velocity, L is the half-channel width and v is the 
kinematic viscosity. The formulae 

3Q 

PPl L3 R, =- 
2Po v2 

RQ=wL’ 

produce for Poiseuille flow results identical with (1.1) if Q is taken as flow rate 
through a square plane surface with dimensions 2L x 2L that, is placed perpendicular 
to the flow between the channel walls; V p  is the pressure gradient; po  is the fluid 
density, which is taken as constant. 

Therefore, for Poiseuille flow R, = RQ = R, and we can depict any Poiseuille flow 
as the bisector point in the (RQ, R,)-plane. 

In  the case of an unsteady flow in a plane channel we shall understand Vp(t) to 
be an instantaneous mean pressure gradient obtained by averaging over the whole 
space between the channel walls and Q(t)  as an instantaneous flow-rate vector 
through the surface mentioned above. This vector is defined as Q ( t )  = 4L2p,u(t), 
where u(t) is the space-averaged flow velocity. 

For a non-stationary flow in a plane channel we introduce two Reynolds numbers 
RQ(t) and R,(t). The number RQ obtained by substituting Q = lQ(t)l into (1.2) will 
be denoted by RQ(t),  similarly R,(t) is the result of substitution of IVpl = IVp(t)J 
into (1.3). 

In  the first problem formulation a class of flows with fixed flow rate 
(RQ(t) = RQ = const) is considered. Therefore the number R, is called the Reynolds 
number of all steady and unsteady flows from this class. 

In the second problem formulation (Vp(t)  = eonst) the number R, = const is called 
the Reynolds number of all the flows under consideration. 

Suppose there exists a flow for which both Reynolds numbers R,(t) = R, and 
RQ(t) = RQ are constant. The Reynolds number R, appears to be equal to RQ only 
for Poiseuille flow; for non-stationary flows R, > RQ.t 

A non-stationary flow with constant Reynolds numbers RQ and R, (R, > RQ) will 
be called a secondary flow. This flow belongs simultaneously to both problem 
formulations described above. Thus the secondary flows obtained with different 
external conditions should be compared on the basis of either (but only one) 
Reynolds-number definition. 

Note that the existence of secondary flows implies the instability of Poiseuille flow 
(to finite-amplitude disturbances at the subcritical Reynolds numbers), 

There are a number of works concerned with the search for secondary flows in a 
plane channel. Most of them deal with the search for two-dimensional secondary flows 
that are periodic in the homogeneous spatial coordinate x with a period X = 2n/u,, a, 
being a minimal wavenumber. $ 

t Thomas (1942) and Serrin (1959) have shown that, for flows in a tube which are statistically 
stationary and periodic in the downstream coordinate, R, > R,. This conclusion may be easily 
extended to the case of a plane channel. 1 Here and in what follows we take L = 1. 
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FIGURE 1.  Secondary flows in the (&, R,)-plane. The curve 2D corresponds to two-dimensional limit 
secondary flows; curve 3D corresponds to three-dimensional secondary flows. 

From numerical calculations of the solutions of the Navier-Stokes equations 
George, Hellums & Martin (1974) inferred that Poiseuille flow is unstable to 
two-dimensional finite-amplitude disturbances with a. = 1.05 for R, >, 3500. The 
authors note that they were not able to find non-decaying disturbances with a. 2 1 
for R, < 3500. 

Zahn et al. (1974) investigated the question of existence of subcritical and 
supercritical two-dimensional secondary flows for a wide range of Reynolds numbers. 
The authors found instability of Poiseuille flow to finite-amplitude disturbances with 
wavenumber a. = 1.3126 at R, = 2707. They also drew the conclusion that Poiseuille 
flow is more stable to three-dimensional than to two-dimensional disturbances. 

Herbert (1977) obtained approximate two-dimensional solutions of the Navier- 
Stokes equations periodic simultaneously in the x-coordinate and in time. The author 
concluded that such a solution exists for R, = 2935 and a. = 1.3231. 

By means of direct numerical integration of the Navier-Stokes equations Orszag 
& Kells (1980) investigated the stability of Poiseuille flow to two-dimensional and 
three-dimensional finite-amplitude disturbances. On the basis of computations of 
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FIGURE 2. Drag coefficient C, as a function of Reynolds number R,. Pseuille flow: C, = 9/R,. 
Experimental data: 0, y h a n  & Rothfus (1959) (curve 1 ,  C, = 0.0618R2); A, Patel & Head (1969) 
(curve 2, C, = 0.0358B$. Results of our calculations: 0,  two-dimensional limit secondary flows 
(curve 3, C, = 0.0153R,“); +, three-dimensional secondary flows. 

evolution of finite-amplitude disturbances in very short time intervals (0, T), 
T = 100-150, the authors stated that stable two-dimensional flows other than the 
Poiseuille flow exist when R, 2 2800 and a, = 1.3231. Three-dimensional computa- 
tions of the evolution of disturbances were performed by them in still smaller time 
intervals. They observed ‘the breakdown to turbulence’ at the Reynolds numbers 
R, 2 1250. 

The development in time of small three-dimensional disturbances against a back- 
ground of two-dimensional disturbances of Poiseuille flow was simulated numerically 
by Orszag & Patera (1980). It was found that when R, 2 1000 the energy of small 
three-dimensional disturbances quickly grew exponentially. They studied also the 
evolution of three-dimensional finite-amplitude disturbances in a small time interval 
at R, = 5000 (Orszag & Patera 1981) and generalized their results for Poiseuille and 
a number of other shear flows (Orszag & Patera 1983). 

I n  the present paper the study of secondary flows and their comparison with 
turbulent flows are performed. By means of the numerical techniques developed, 
the flows with a fixed mean pressure gradient are simulated. Some classes of two- and 
three-dimensional secondary flows are obtained. 

Two-dimensional secondary flows with the periodicity intervals X ,< 27c (a, 2 1) 
were found for Reynolds numbers R, 2 3250 (RQ > 2855). In  the range 
R, 2 2750 (RQ 2 2612) two-dimensional secondary flows with X >, 67c (a, 5 0.3) 
were discovered. 

Three-dimensional secondary flows were found for R, 2 2100 (RQ > 1313). It 
should be pointed out that  three-dimensionality of pulsations considerably increases 
the drag (reduces the flow rate &). 

Each secondary flow may be depicted by a point in the (RQ,R,)-plane. The 
secondary flows computed are shown in figure 1.  Curve 2D, which we call ‘the limiting 
curve’, corresponds to the secondary flows in which the maximal drag (at fixed flux) 
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or minimal flux (at fixed mean pressure gradient) are realized. This limiting curve 
is also plotted in the (BQ, (7,)-plane (C, being the drag coefficient; figure 2).  The 
computed three-dimensional secondary flows, as well as the experimental results by 
Whan & Rothfus (1959) and Pate1 & Head (1969), are also presented in figure 2. It 
is clear that the values of the drag coefficient (7, in all two-dimensional secondary flows 
differ substantially from the experimental data. In  contrast, the drag coefficients in 
the computed three-dimensional secondary flows agree rather well with experimental 
data on turbulent flows. 

A few two-dimensional secondary flows were computed several times, with an 
increased spatial-temporal resolution and with alteration of the numerical technique. 
The purpose of these calculations was to confirm the stability of secondary flows to 
inaccuracies in their numerical simulation. Changes in secondary flows proved to be 
insignificant. 

In $2 we present the mathematical formulation of the problem, as well as one 
version of our numerical technique. In $3  the basic results on two-dimensional 
secondary flows are presented. Results on three-dimensional secondary flows are 
described and compared with experiments in $4. The present results are discussed 
and compared with those obtained by other authors in $5. 

2. Mathematical formulation of the problem and numerical technique 
The problem of a periodic incompressible viscous fluid flow in a plane infinite 

channel K = [X= {x,y,z}: 1x1, (y( < 0 0 ;  1z( < 11 can be reduced to determining the 
solution of the Navier-Stokes equations 

a V ( X j  t ,  + ( V (  X, t ) ,  V) V ( X ,  t )  = - V p ( X ,  t )  + v v 2  V ( X ,  t ) ,  (2.1) 

(2.2) 

(2.3) 

(2.4) 

at 

v. V(X,  t )  = 0 

V(x,y,z = + l , t )  = 0 

V(z,  y, 2, t )  = V(x + x, y, 2, t )  = V(x, y + Y ,  z, t ) .  

that satisfies the no-slip condition on the channel walls z = 1 : 

and the periodicity conditions with respect to the x-, y-variables : 

Here v is the kinematic viscosity coefficient, V(X,  t )  = (u(X,  t ) ,  v ( X ,  t ) ,  w(X,  t ) )  is the 
velocity field of the flow, p ( X ,  t )  is the pressure (the density of the fluid is assumed 
to be constant, po E 1). 

In  our method of the numerical solution of the problem (2.1)-(2.4) the solution is 
represented in the form 

V(X,  t )  = V,(z) + V(X, t ) ,  

p ( X ,  t )  = -2vx+p’(X, t ) ,  

(2.5) 

(2.6) 

where Uo(z) = {Uo(z)  = 1-2 ,  O , O }  (in what follows the primes on the velocity and 
pressure deviations from their values for the Poiseuille flow are omitted). Upon 
substituting (2.5) and (2.6) into (2.1)-(2.4) we obtain 

(2.7) 

(2 .8)  

-- aV(X9t) - [V(X,t),w(X,t)]-L[V(X,t)]-V17(X,t)+vV2V(X,t), 
at 

v. V(X,  t )  = 0, 
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V(x,  y, z = * 1, t )  = 0, 

V(Z, y, 2, t )  = V(x+ x, y, 2, t )  = V(X, y+ y ,  2, t ) ,  

(2.9) 

(2.10) 

(2.11) 

The conditions (2.11) in combination with (2.6) mean that the space-averaged 
pressure gradient equal to - 2vi, i = { 1 , 0, 0}, is fixed. Therefore the Reynolds number 
R p  = 1 /u  is ascribed to all the flows studied here. 

The approximate solution of the problem (2.7)-(2.11) is searched for in the form 

where a. = 2n/X, Po = 2n/ Y ,  Tp(z) = cos (p arccos z )  are Chebyshev polynomials. In 
order that the solution be real-valued the following conditions should be satisfied: 

V X ,  n, p ( t )  = V-m, -n,  p ( t ) ,  Rt, n, p ( t )  = n-m, -n, 

where the asterisk refers to complex-conjugate quantities. Note that Chebyshev 
polynomials in numerical calculations of such a problem were used by Herbert (1977), 
Orszag & Kells 1(1980), Moin & Kim (1980) and others. 

The integration in time of the problem (2.7)-(2.11) is carried out by the fractional 
step method (see Yanenko 1967; Samarsky 1977). 

Three fractional steps are introduced. At the first fractional step in the mixed 
spectral-physical representation (for the x - ,  y-variables - in the space of Fourier 
coefficients, and for z-in the physical space at the mesh nodes zl = cos(d/P),  
1 = 0,1, . . . , P) the solution of the explicit difference scheme 

"$8- " n l =  ~ ~ n l - ~ ~ ~ , - ~ i m a o ~ l  v ~ , l - i u ; ( ~ ~ n l - w ~ ~ l )  (2.13) 

is determined, where i = {1,0,0}, F = [ V ,  w ] ,  U, and U; are the values of Uo(z)  and 
its derivative at  the point z l .  The pseudospectral method of calculation of the 
nonlinear terms (see Orszag 1971) is applied. 

A t  the second fractional step the solution of the following purely implicit difference 
scheme is determined : 

7 

(2.14) 

v*  Vk+f(X) = 0, (2.15) 

vk+S(x, y, z = & 1 )  = 0. (2.16) 

The problem (2.14)-(2.16) is effectively solved in a representation spectral in all 
spatial variables. In  the z-variable the method of Petrov (1940) is employed. This 
method is also called the spectral tau-method (Lanczos 1956; Fox 1962). 

In our algorithms the components of Vk+S are computed consecutively. 
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At first the systems of linear equations 

(2.17) I - ykn(  1 + T I J ~ " , )  w&$~ + (1 4- 27vy2 m n  ) W ( ~ ) ~ + % - T V W ( ~ ) ~ + ;  m n p  m n p  = f m n p i  

P P P-1 P-1 

p = o , 1 ,  ...) P-4, 

P k+% = 2 W ( l ) k e  = c ( - l ) p W ( l ) k + %  = 0, 
m n p  m n p  p = ,  

x w&$p= x ( - 1 )  w m n p  
P-0 P-0  P--0 

are solved, where (m( < M ,  In( < N ,  y k n  = a: m2 + /3: n2 > 0, 

f m n p  = - y k n  wk+i  - ia mU(l)k+4 - ip,nv(Ok+fj. 
m n p  o m n p  m a p  

As a result the expansion coefficients w&?~ of the z-component of velocity are 
obtained. 

The values u g ) ,  a t )  and a!) in (2.17) are computed by the formulae: 
P 

z sa, ( p  = 0,1, ..., P - l ) ,  (2.18) 

x s(s2--p2)aS (p = 0,1,  ..., P-2) ,  (2.19) 

2 
&) = - 

P 
c p  s - p + i ,  s + p =  i(mod 2 )  

P 1 
a(2) = - 

1 

P 
' p  s=;p+P, s E p(mod 2 )  

P 

r, S[S'(S~ - 4)'- 3p2s4 + 3p4s2 - p 2 k 2  - 4)'] CL, a(4) = __ 
P 

24cp s-p+4, s s p(mod 2) 

(p = 0,1,  ...) P-4),  (2.20) 
where C, = 2, C p  = 1 for p 2 1 ; s = p (mod2) means that s - p  is even. The systems 
(2.17) are solved with a high accuracy by means of a well-designed rapid technique 
(see Rozhdestvensky & Simakin 1 9 8 2 ~ ) .  After w&$~ are known, two other velocity 
components may be easily found. 

It should be emphasized that the spectral tau-method possesses a high accuracy. 
However, in some cases the application of this method results in spurious roots, which 
make the spatial approximation of the evolution differential problem absolutely 
unstable (see e.g. Rozhdestvensky, Ermakova & Priymak 1977 ; Rozhdestvensky & 
Yanenko 1978; Gottlieb & Orszag 1977). I n  the case of the purely implicit difference 
scheme (2.17), this shortcoming is manifested in a quite original manner: the scheme 
becomes conditionally stable with the limitation of the time step 7 from below, 
7 > 7, - 2/(vP)+O as P+m. In  our calculations R p  = 1 / v  < 12000 and P 2 32, 
consequently T~ 5 0.02. At the same time the considered scheme at 7 = 0.1,0.05 
possesses a high reliability and accuracy, 

At the final third fractional step in the mixed spectral-physical representation (as 
a t  the first fractional step) the solution of the implicit difference scheme 

(2.21) 

is obtained. Step (2.21) symmetrizes the first fractional step and improves the 
approximation of the linear term L[ V ( X ,  t ) ] .  The third fractional step completes the 
calculation of the full step, and we have the vector Vk+'(X) as the initial condition 
for the next time step. 

It is not difficult to show that the solution Vk+I(X) satisfies the incompressibility 
condition (2.8) and the no-slip condition (2.9). 

Note that the calculations of the nonlinear term F = [ V,  01 and the transitions in 
the z-variable from physical to Fourier space and conversely are performed by means 
of the new algorithm of fast Fourier transform by Kaporin (1980). 
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Concluding here the brief presentation of our numerical technique, we refer the 
reader for further details to Rozhdestvensky & Simakin ( 1 9 8 2 ~ )  and Simakin ( 1 9 8 3 ~ ) .  

Note that we have also constructed an analogous scheme for the other formulation 
of the problem (at fixed flow rate). 

We have carried out a detailed spectral analysis of the stability and accuracy of 
these numerical schemes in a wide range of the wavenumbers for subcritical and 
supercritical Reynolds numbers. A description of the spectral analysis as a method 
of investigation of the stability and accuracy of numerical algorithms for solution 
of the Navier-Stokes equations was given by Rozhdestvensky (1973). 

This method enables us to determine both the maximal allowable integration time 
step and the necessary accuracy of the spatial approximation which will assure an 
acceptable accuracy of the computational algorithm when applied to the description 
of the linear evolution of disturbances. 

It was found that for a comparatively small number of basis functions and for a 
rather large time step 7 = 0.1 our schemes are stable and have an acceptable 
approximation accuracy both in space and time. 

I n  addition, i t  was found that the ‘excessive ’ eigenvalues due to the three-time-level 
character of the schemes have a considerable negative real part) as compared with 
the larger true eigenvalues. Consequently the disturbances corresponding to  
‘excessive ’ roots decay rapidly, and influence the solution insignificantly. 

Note also, that  a t  P 2 30-40 and T - 0.1 the constructed schemes are stable in 
a wide range of wavenumbers a and /3. This was achieved by the use of a semi-implicit 
treatment of the linear term L[ in our schemes. 

By means of the spectral analysis of the numerical schemes we were able to evaluate 
the action of the individual terms of the Navier-Stokes equations and to find the 
optimal parameters for our schemes. This enables us to  perform a large number of 
computations of two- and three-dimensional flows ovcr considerable intervals of time 
by use of computers of moderate capacity. 

More detailed presentation of the results of the spectral analysis of ours and some 
other schemes is given in Simakin ( 1 9 8 3 ~ ) .  

3. Two-dimensional secondary flows 
By means of our method presented in $ 2  as well as some of its modifications a search 
for two-dimensional secondary flows was carried out in the R, range from 2000 to  
12000. 

Imposing a certain velocity field V , ( X )  (which differs from the velocity in Poiseuille 
flow, and which satisfies V -  V, = 0) as the initial velocity at t = 0 we compute the 
evolution of corresponding flow until R, became steady, i.e. the flow became a 
secondary or Poiseuille flow. The mean time of the passage of the flow to  a secondary 
regime was T = O(l/v) .  

The passage of the flow to a secondary flow was controlled by the stabilization of 
its principal integral characteristics such as the flow rate Q ,  and total energy of disturb- 
ances. At the final stage of all our computations of two-dimensional secondary flows 
the flow rate is practically constant: its variation does not exceed 0.1 yo of its 
value. 

In  the first series of runs the evolution of finite disturbances with periodicity 
intervals X 5 27t (a, 2 1 )  was computed (short-wavelength disturbances). Three runs 
were performed a t  R, = 2935 and a. = 1.3231 (see table 1,  runs 1-3). As the initial 
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~~~~ ~ 

Reynolds 
number 

Run R, 

1 2935 
2 2935 
3 2935 
4 2935 
5 5000 
6 4500 
7 4000 
8 3500 
9* 3250 

10 3000 
11* 4000 
12* 5000 
13 5000 
14 6250 
15* 6250 
16 7500 
17* 7500 
18 7500 
19 8750 
20 8750 
21 10000 
22 10000 

I 23 10000 
24* 10000 
25 10000 
26 12000 
27 12000 
28* 12000 
29 12000 

Minimal Number 
wave- of basis Time 

number functions step 
a, ( 2 M + l ) ( P f l )  7 

1.3231 9x33 
1.3231 17 x 33 
1.3231 9 x 33 
0.9923 17 x 33 
1.25 9x33 
1.25 9 x 33 
1.25 9x33 
1.25 9 x 33 
1.25 9 x 33 
1.25 9x33 
1.3 9x33 
1.35 9 x 33 
1.5 9x33 
1.25 9x33 
1.5 9x33 
1.25 9x33 
1.5 9 x 33 
1.7 9 x 33 
1.25 9x65 
1.5 9x65 
1 .o 9 x 65 
1.25 9 x 65 
1.5 9 x 65 
1.65 9x65 
1.7 9 x 65 
1.25 9 x 65 
1.5 9x65 
1.65 9x65 
1.75 9x65 

0.1 
0.05 
0.05 
0.05 
0.05 
0.05 
0.05 
0.05 
0.05 
0.05 
0.05 
0.05 
0.05 
0.05 
0.05 
0.05 
0.05 
0.05 
0.05 
0.05 
0.05 
0.05 
0.05 
0.05 
0.05 
0.05 
0.05 
0.05 
0.05 

Termination 
time of 

computation 
T x 

10 
30 
30 
10 
60 
55 
45 
40 
35 
35 
45 
55 
45 
70 
70 
80 
80 
70 
90 
90 

110 
100 
90 
90 
60 

120 
100 
110 
70 

Reynolds 
number 

2 935 
2 935 
2 935 
2 935 
3616 
3413 
3183 
2 952 
2 855 
3 000 
3 130 
3 376 
5 000 
4 165 
3 806 
4671 
4216 
7 500 
5 159 
4620 
6 945 
5 605 
5022 
4914 

10000 
6 239 
5 564 
5 442 

12000 

RQ 

Normal. 
ized 
flow 
rate 

Q / Q o  

1 
1 
1 
1 
0.723 
0.758 
0.796 
0.843 
0.879 
1 
0.783 
0.675 
1 
0.666 
0.609 
0.623 
0.562 
1 
0.590 
0.528 
0.695 
0.561 
0.502 
0.491 
1 
0.520 
0.464 
0.454 
1 

Total 
energy 

of 
disturb- 

ances 
E x 1 0  

0 
0 
0 
0 
0.533 
0.421 
0.318 
0.204 
0.132 
0 
0.346 
0.689 
0 
0.736 
0.963 
0.913 
1.184 
0 
1.060 
1.356 
0.605 
1.196 
1.495 
1.540 
0 
1.385 
1.698 
1.759 
0 

TABLE 1. Characteristics of the two-dimensional computations of the evolution of short-wavelength 
finite-amplitude disturbances in plane Poiseuille flow (asterisks indicate the limit secondary flows) 

disturbance the first Fourier mode Vm-l ( z )  = (u,(z), 0, wl(z)) was given with differ- 
ent energies 

1 '  
E,(O) = -s {~ul(z)~+~w,(z)~z}dz = 2.16 x 5.11 x 2.973 x 

2 -1 

Here V,(z) is the eigenfunction of the linearized scheme (2.13)-(2.21) corresponding 
to the senior eigenvalue. Having performed runs 1-3 over considerable intervals of 
time, we made certain that the disturbances completely decayed when t --f CO, since 
in the end of runs 1-3 the disturbances were decaying in accordance with the linear 
theory. 

Imposing an initial disturbance similarly to foregoing runs (the energy 
El(0)  = 1.56 x lov2) we succeeded in obtaining a two-dimensional secondary flow a t  
the Reynolds number R, = 5000 and ct0 = 1.25 (see run 5, table 1). This flow passed 
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A E X lo1, -AQ X 10 
6 -  

4- 

2-  

t x 10-3 
0 

1 2 3 4 5 1 2 3 4 5 

FIGURE 3. Evolution of the total energy of disturbances, decrease of the flow rate, and energies 
of the zeroth and first harmonics in the two-dimensional run 5 (RP = 5000, a, = 1.25). 

to the secondary regime with with the constant RQ = 3616. I n  figure 3 we present 
the evolution of the flow-rate change 

ri 

of the total energy of disturbances per unit length 

1 
l-4,,(t) = 2x Jo s_, [u2(2, 2, t )  +w2(2 ,  2, t) l  dxdz, 

E,(t)  = 'I [lu,(z, t)12+/W,(Z, W I  dz, 

and the energies of harmonics 
1 

2 -1 

for m = 0,1  in run 5. 
I n  table 1 for the time corresponding to termination of the computations the values 

of basic characteristics of secondary flows are presented : the Reynolds number R,, 
the flow rate normalized by its value for Poiseuille flow, and the total energy of 
disturbances per unit length. 

Taking as a basis the secondary flow obtained a t  R, = 5000 and a, = 1.25, we were 
able to go over gradually to smaller values of Reynolds numbers R, and other values 
ofa,. This search technique noticeably reduces the time of passage of the flow to the 
secondary regime. 

The next run was performed a t  R, = 4500 and a, = 1.25. As the initial condition 
the velocity field was set which was obtained in the previous run a t  t = 5000. I n  this 
run a secondary flow with constant RQ = 3413 was obtained (see table 1,  run 6). 

Acting in a similar way we found secondary flows at R, = 4000,3250 and CL, = 1.25. 
For R, < 3250 and a, = 1.25 we failed in finding two-dimensional secondary flows. 
Farther in the range of R, = 3250-12000 the search for secondary flows was carried 

out for various a, 2 1.  After a large number of computations we obtained several 
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Reynolds 
number 

Run R, 
30 2935 
31 2900 
32 2850 
33 2800 
34 2750 
35 2700 
36 2700 
37 3500 
38 4800 
39 6250 
40 7500 
41 8750 
42 12000 

Minimal 
wave- 

number 
a 0  

0.3387 
0.3387 
0.3387 
0.33 
0.33 
0.33 
0.15 
0.3 
0.3 
0.3 
0.3 
0.3 
0.15 

Number 
of basis Time 

functions step 

33 x 33 0.05 
33 x 33 0.05 
33 x 33 0.05 
33 x 33 0.05 
33 x 33 0.05 
33 x 33 0.05 
33 x 33 0.05 
33 x 33 0.05 
33 x 33 0.05 
33 x 33 0.05 
33 x 33 0.05 
33 x 33 0.05 
33 x 33 0.05 

(2M+ 1) (P+ 1) 7 

Termination 
time of 

computation 
T x 

70 
60 
50 
50 
40 
30 
35 
60 
70 
80 
95 
95 

130 

Reynolds 
number 

2 723 
2701 
2672 
2642 
2612 
2700 
2700 
2957 
3578 
4275 
4818 
5361 
5718 

RQ 

Normal- 
ized 
flow 
rate 

Q / Q o  

0.928 
0.931 
0.937 
0.944 
0.950 
1 
1 
0.845 
0.746 
0.684 
0.642 
0.613 
0.477 

Total 
energy 

of 
disturb- 

ances 
E x  lo2 

0.615 
0.568 
0.501 
0.431 
0.386 
0 
0 
2.003 
4.586 
6.639 
8.217 
9.443 

16.299 

TABLE 2. Characteristics of the two-dimensional computations of the evolution of 
long-wavelength finite-amplitude disturbances in plane Poiseuille flow 

A -AQ X I0 

2 4 6 

- 
t x 10-3 

1 2 3 4 5 

FIQURE 4. (a) Decrease of the flow rate with time t in run 30 (R ,  = 2935, a, = 0.3387). (b) Total 
energy of disturbances, energies of the zeroth, third and fourth harmonics versus time t in run 30. 

classes of secondary flows (see table 1).  It was discovered that for any R, > 3250 there 
exist a set of two-dimensional secondary flows with different periodicity intervals 
X 5 2n (see figure 1). Among them there exists the ‘limiting’ flow in which the 
minimal flow rate (at fixed RP) and the maximal drag (at fixed Re) are realized. For 
some Reynolds numbers R, E [3250,12000] secondary flows were obtained which are 
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sufficiently close to the ‘limiting’ flows. In table 1 such flows are marked by an 
asterisk. 

In the next series of runs a search for two-dimensional secondary flows with 
different periodicity intervals X 2 67~ was undertaken. 

Run 30 (see table 2) was performed at R, = 2935 and a. = 0.3387. As the initial 
disturbance the first five Fourier modes were imposed in the representation of the 
approximate solution (2.12) with different energies E,(O) = E2(0) = 1.30 x lop3, 
E3(0)  = 6.81 x lop3, E4(0) = E5(0) = 8.24 x In figure 4(a) the change AQ(t) in the 
flow rate is plotted. It is seen that at  the beginning the flow rate decreases, and 
when t 2 3200 it becomes practically constant. Similar passage to the constants of 
the total energy of disturbance E,,,,(t) and the energies of harmonics E,(t), m = 0 , 3 , 4 ,  
is observed (see figure 4 b ) .  Note that among the harmonics that are taken into 
account in the representations (2.12) those corresponding to m = 0 , 3 , 4  have the 
greatest energies. 

In the next runs at  R, = 2000-2800 and a. = 0.15 to 0.3387 we did not succeed in 
finding secondary flow when imposing the initial condition in a way similar to the 
previous run 30. However, taking the velocity field of the secondary flow obtained 
in run 30 as the initial condition, we computed the secondary flow a t  R, = 2900 and 
a. = 0.3387. Decreasing the Reynolds number R, in such a way, we found secondary 
flows up to R, = 2750 (RQ = 2612). 

The basic integral characteristics of these flows are presented in table 2. 
A few computations of the long-wavelength disturbance evolution were performed 

for larger Reynolds qumbers. Two-dimensional secondary flows with periodicity 
interval X = 27~10.3 for R, = 3500-8750 and at R, = 12000, X = 27c/0.15 were 
obtained (see table 2). 

Thus for R, E [2750,3000] the two-dimensional secondary flows were found only for 
a, 5 0.3. This means the instability of Poiseuille flow to finite-amplitude long- 
wavelength disturbances when R, 2 2750 (RQ 2 2612). 

Some runs were performed with the goal of evaluating the influence of initial 
conditions over the integral characteristics of a secondary flow. In three runs at  
R, = 3500 and a. = 0.3 different initial conditions were imposed. In these runs the 
secondary flows were obtained for which the flow rates as well as the total energies 
of disturbances just coincided (see figures 5a,  b ) .  Analogous results were obtained in 
computations at  R, = 3500, a. = 1.25 and R, = 7500, a. = 0.3 with various initial 
conditions. 

Thus these computations confirm the fact that the values of integral characteristics 
of two-dimensional secondary flows do not depend upon the initial conditions, but 
are determined only by the Reynolds number and the interval of periodicity. 

The results of each run can be recalculated for the other external condition 
(Q = const), since in each secondary flow the flow rate Q(t) is practically constant. 
The deviations of the mean-velocity profile of the secondary flow from the profile in 
the Poiseuille flow with the same flow rate (that is at R = RQ) are calculated by the 
formula 

(3.1) 
IAQI 

( v;(G z7 t ) ) ,  = __ ( 1  - 2 7  + ( q x ,  z,  t)),, 
Qo 

where IAQI is the reduction of the flow rate, Qo = $ is the flow rate for Poiseuille flow 
and (Vb(z, z, t ) ) , ,  ( Vk(x, z, t ) ) ,  are mean profiles of the velocity disturbance in the 
problem with the fixed flow rate and the fixed mean-pressure gradient respectively. 

The mean-velocity disturbance profile ( V,(z, z ,  t ) ) ,  obtained in run 30 
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(a)  

4 -  

3- 

2-  

1- 

- 

t x 10-3 

FIGURE 5. Study of the influence of initial conditions. (a) Decrease of flow rate at R, = 3500, 
do = 0.3 with time. (b) Same as (a), but for total energy of disturbances. 

(R,=2935, a,=0.3387) a t  t=5005,  5010, 5015 as well as the result of its 
recalculation (Vb(x ,  z ,  t ) ) ,  (R,  = 2723) are presented in figure 6. We see that a t  
R, = 2723 the averaged profile ( Vb(x, z ,  t ) ) ,  has three positive maxima : two near the 
walls and one at the centre. Note that similar forms of averaged velocity disturbance 
profiles were obtained by Shkadov (1973b), Zahn et al. (1974) and Rozhdestvensky 
& Priymak (1982). 

The same graphs but for run 42 (RP = 12000, R, = 5718, a,, = 0.15) at t = 8000 
are plotted in figure 7. It is seen that a positive maximum in the mean profile ( V b ) ,  
at the centre of the channel vanishes as R, increases. 
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z = 0.83 1 

0.11 

0 

00 

-0.21 

z = 0.471 O . l l j u  0 . 1 q w  

FIGURE 8. Behaviour of the longitudinal u- and transverse w-components of the velocity of 
disturbances over the time interval t = 5000-5400 at different points {z = 0, zk}, R, = 2935, 
m0 = 0.3387 (run 30). 

In figure 8 the evolution of longitudinal u(x,z,t) and transverse w(x,z,t) com- 
ponents of the velocity of disturbances (R, = 2935, a. = 0.3387, run 30) in the 
time interval (5000,5400) is given a t  the following points of the channel: 
{x , zk}  = (x = 0; zI = 0 . 8 3 1 , ~ ~  = 0.471, z3 = 0.195, z4 = O}. It is seen that the ampli- 
tude of oscillations of u(z, z ,  t )  is maximal near the channel walls. For the transverse 
component w(x ,  z ,  t )  the picture is converse: the level of fluctuations increases on 
approaching the channel centre. 

I n  figure 9 ( a )  we plot instantaneous level lines of the function $(x,z,t), where 
a$/ax = u, a$/ax = - w for the two-dimensional secondary flow a t  R, = 2935 and 
a,, = 0.3387 (run 30). Note that V = {u, 0,  w} is the deviation of the flow velocity from 
the velocity in the Poiseuille flow a t  R = R, (see 92). In  figure 9 (b )  instantaneous 
streamlines for the secondary flow at  R, = 12000 and a,, = 0.15 (run 42) are 
presented. In contrast with figure 9 (a) ,  the streamlines of the flow are calculated by 
the total velocity: i3$/az = Uo(z)  + u, a$/ax = - w. An intermittence phenomenon 
characteristic of turbulent flows is observed : the regions of strongly pulsating flow 
(region A )  are separated by a region of less-pulsating flow (region B) .  Note that 
the dimensions of the eddies decrease with increase in the Reynolds number. 
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t =5100  

t = 8005 
I .  

X X 
A B A 0 

FIGURE 9. (a )  Instantaneous pictures of the level curves of the function +(x, z, t ) ,  where a+/& = u, 
a+/ax = -w for two-dimensional secondary flow a t  R ,  = 2935, a, = 0.3387 (run 30). Note that 
the full velocity of the flow is V = {u + U,(z), 0 ,  w}. ( b )  Instantaneous picture of the level curves of 
the stream function for two-dimensional secondary flow a t  R, = 12000, a, = 0.15 (run 42). The 
regions of strongly pulsating flow (regions A )  are separated by a region of a less-pulsating flow 
(region B) .  

The long-wavelength secondary flows are rather unusual objects in the theory of 
hydrodynamical stability ; in particular, they are non-periodic in time. For this reason 
we have investigated the temporal behaviour of the coefficients of the velocity- 
field expansion of the two-dimensional secondary flow (2.12) a t  R, = 2935 and 
a. = 0.3387. It turned out that the dependencies of coefficients ump(t)  and wmp(t)  were 
close to the following: 

~ r n , z r + l ( t )  = Am,zr+ lexp  ( - i ~ m t ) j \  

j 
(m * 0);  (3.4) 

wm, z , s ( t )  = B m ,  zsexp ( - iwmt )  

where JmJ < M ,  s = 0, . . . , iP,  r = 0, . . . , $P- 1 ; Amp and B,, are constant. 
Substituting the representations (3.2)-(3.4) into the expansion (2.12), we get 

(3.5) I M 

m=1 
u(x, 2 ,  t )  = U 0 ( Z )  + u g ( 2 )  cos (wo t )  + x [urn(x - c, t ,  2 )  + Urn (z - c, t ,  z ) ] ,  

w(x,z,t) = c [wm(x-Cmt,z)+Wm(z-Cmt, z ) ] ,  
M 

rn=1 
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A ,  = 4.807 x 

Am 
2.247 x 
1.260 x 
6.597 x 

2.526 x 
6.055 x 
4.042 x 

3.934 x 10-3 

2, = 1.613 x 1 0 - 3 , ~ ,  = 0.2607 

cnl Xrn 

0.5621 6.110 x 
0.5621 5.825 x 
0.5621 4.520 x 
0.5621 1.795 x 
0.3158 5.656 x 
0.3524 2.531 x 

0.5621 4.554 x 10-3 
Qrn 

0.2027 
0.1836 
0.3154 
0.3710 
0.4192 
0.4448 
0.4569 

Em 
m = O  1 2 3 4 

2.776 x 10-3 2.752 x 1.152 x 1.604 x 1.144 x 

5 6 7 8 9 
1.806 x 3.136 x 9.076 x 3.589 x 2.682 x 

10 11 12 13 14 
1.585 x 1 OW6 9.124 x lo-’ 5.961 x lop7 2.663 x lop7 2.084 x lo-’ 

15 16 
2.320 x lo-’ 2.297 x 10-7 

TABLE 3. Values of the maximal amplitudes A,, x,, phase velocities C,, Cm, frequency w, in 
(3.2)-(3.4) and mode energies Em for the two-dimensional secondary flow at R,  = 2935 and 
a, = 0.3387 (run 30) 

where u,,, u,, 6, are even functions of the variable x and Go, ii,, w, are odd functions 
of z ;  C, = w,/arn, C, = W,/am,arn = ma,,. 

Values of amplitudes A ,  = mpx 1Am, 2s( and Xrn = mpx [Arn, 2r+1[ as well as the phase 

velocities C,, ern for m = 1, . . . , 7  and the frequency w,, are presented in table 3. Here 
the values of mode energies Em for m = 0,  . . . ,16 are also presented. It is interesting 
to note that the phase velocity of the first five waves V, = {urn, 0, w,} are equal to 
each other. 

Thus the secondary flow under consideration consists of a large number of 
progressive waves propagating along the x-axis with different phase speeds. I n  
addition ( V(x, z ,  t ) ) ,  consists of an item that does not change in time and on which 
a standing wave with small amplitude is imposed. 

We have also investigated the accuracy of the simulation of two-dimensional 
secondary flows. I n  run 30 a t  R, = 2935, a. = 0.3387 the secondary flow with 
R, = 2723 was obtained. By doubling the numbers M and P in the representations 
(2.12) of the approximate solution, we repeated the computation of the secondary 
flow. The integral characteristics of secondary flow Q and Etot obtained in this 
repetition in fact coincided with those in run 30. 

In  the next control run at R, = lo4, a. = 1.25, ( 2 M +  1 )  x (P+ 1)  = 17 x 65 the 
spatial resolution in the x-direction in run 22 was doubled (see table 1). The changes 
in Q and Etot were respectively 0.3 yo and 0.8 yo of their values. 

Some computations with various time steps r showed that our numerical technique 
allowed a rather large time step r = 0.1. 

Finally note that a few secondary flows were computed repeatedly by means of 
some other numerical techniques. The changes arising in the secondary flows 
appeared to be insignificant. 

- 
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Thus the control runs showed that the two-dimensional secondary flows were 
computed with a good accuracy. Some additional details on the two-dimensional 
secondary flows, their properties, accuracy, etc. may be found in Rozhdestvensky 
& Simakin (1982b,c, 1983) and Simakin (1983b). 

4. Three-dimensional secondary flows and their comparison with turbulent 
flowsf 

In  this section we present the results of computations of three-dimensional 
secondary flows in a plane channel. Again the mean-pressure gradient is fixed and 
we use the numerical method described in $2. 

In  all the three-dimensional runs M = N = 4 and P = 32, which corresponds to 
3(2M+ 1 )  (2N+ 1 )  (P+ 1)  = 8019 degrees of freedom of the representation (2.12) of 
the velocity field in our numerical method. Some other parameters and results of the 
computations are given in table 4. Low values of M and N are used, because of the 
substantial increase in computer time needed with increase in M and N .  We also were 
not able to carry out a considerable number of runs a t  various 01, and Po in the 
three-dimensional case. These circumstances do not allow us to reach justified 
conclusions on limit secondary flows with maximal drag as in the two-dimensional 
case. 

We think that such an investigation of the three-dimensional limiting secondary 
flows is useful, but i t  requires a cooperation of efforts in this direction. 

The first three-dimensional secondary flow was computed at R, = 5000 and 
a, = 1.25, Po = 2 (see table 4). As the initial condition in this run the velocity field 
of the two-dimensional secondary flow with the same R, = 5000 and a. = 1.25 was 
taken on which a small three-dimensional disturbance V,(x, y,  z )  was imposed, where 
uo(x, y, z ) ,  wo(x, y, z )  are even functions and .uo(x, y, 2) is an odd function of y. It may 
be easily shown that t,hese properties of the velocity components, i.e. the y-symmetry 
of u, w and the y-antisymmetry of v, will be preserved in the flow for all t > 0. This 
flow passed to  a steady regime with RQ = 2037. Note that the reduction of the flow 
rate proportional to R, - RQ increased by a factor of more than two as compared with 
the flow-rate reduction in the two-dimensional secondary flow. 

The next run 2 was performed a t  the same parameters R, = 5000, a, = 1.25, 
Po = 2. However, in contrast with the previous run, here an initial three-dimensional 
disturbance V,(x, y, z )  of a general form was imposed. This run was performed in the 
time interval (0,3000) up to the passage of the flow to a secondary regime. The 
principal integral characteristics E,,,(t) = (1 /2X Y )  s j j D  P ( X ,  t )  dxdy dx$ and AQz of 
this secondary flow appeared to  be sufficiently close to  those obtained in the previous 
secondary flow (see table 4, runs 1 ,  2).  

Departing from the three-dimensional secondary flow found a t  R, = 5000, we 
gradually go over to  other Reynolds numbers R,. As an initial condition in the next 
runs the velocity field V ( X ,  T) transformed in a certain way was imposed which was 
obtained in the foregoing computation of the three-dimensional secondary flow. This 
technique of search reduces the time of passage of the flow to a steady regime. I n  
this way three-dimensional secondary flows a t  R, = 7500, 3500, 2800, 2100 were 

t This part of our work had been completed by 1 February 1983 and was included in the revised 
version of our original manuscript. A very brief report on the results was given by Rozhdestvensky 
& Simakin (1983). 

1 Here the domain ZI 3 (1x1 < $ X ,  Iy( < & Y ,  (z(  < 1). 
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Reynolds 
number - 

Run R,  

1 5000 
2 5000 
3 5000 
4 5000 
5 7500 
6 3500 
7 2800 
8 2 100 
9 1790 

10 1250 

Minimal 
wavenumbers 

a0 P O  

1.25 2.0 
1.25 2.0 
1.25 3.0 
1.25 4.0 
1.5 2.0 
1.25 2.0 
1.25 2.0 
1.25 2.0 
1.25 2.0 
1 .o 1 .0 

Termination 
time of 

computation 
T x 

35 
30 
15 
15 
45 
30 
25 
20 
20 
13 

Reynolds 
number 

RQ 
2037 
2023 
1958 
2080 
2585 
1665 
1498 
1313 
1790 
1250 

Normalized Total 
flow energy of 
rate disturbances 
&I&, E x  10 

0.407 2.159 
0.405 2.162 
0.392 2.232 
0.416 2.097 
0.345 2.514 
0.476 1.767 
0.535 1.594 
0.625 1.008 
1 0 
1 0 

TABLE 4. Characteristics of the three-dimensional computations of the evolution of 
finite-amplitude disturbances in plane Poiseuille flow 

1 

U 

r 1 I I 1 I I I I 

0.5 1 
0 ’  

1 -z 

FIGURE 10. Normalized profiles of the mean velocity at various Reynolds numbers RQ.  Experimental 
results: 0, RQ = 2127; 0 ,  1463; +, 1217 (Whan & Rothfus 1959); A, 2070, A, 1294 (Pate1 & 
Head 1969). Results of calculations: curve 1, R,  =.2037 (3D, run 1);  2, 1498 (3D, run 7) ;  3, 1313 
(3D, run 8); 4, mean-velocity profile in two-dimensional secondary flow a t  R, = 2952 (2D, run 8). 

obtained. The flow in run 8 (RP = 2100) passed to a steady regime with R, = 1313, 
but the evolution of disturbances in run 9 (RP = 1790) resulted in their complete 
decay. 

Thus for the Reynolds numbers R, 2 2100 (Ro 2 1313) the stable three- 
dimensional secondary flows in the plane channel were found. This implies the 
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FIQURE 11. Mean velocity profiles (n,, of three-dimensional secondary flow at R, = 5000, 
R, = 2037 (run l ) ,  the velocity profile of Poiseuille flow U,(z) a t  R = R, = 5000, the velocity profile 
of Poiseuille flow U,(z) at R = R, = 2037. 

FIGURE 12. Results of recalculation of the mean-disturbance-velocity profiles of two-dimensional 
(run 5, table 1) and three-dimensional (run 1, table 4) secondary flows for another external condition, 
Q = const. 

instability of the plane Poiseuille flow to finite-amplitude three-dimensional disturb- 
ances at  these Reynolds numbers. This conclusion agrees rather well with the results 
of experiments by Davies & White (1928), Whan & Rothfus (1959), Patel &, Head 
(1969) and Kao & Park (1970) in which transition to turbulence in the plane channel 
was observed for Iz, >, 1000. 
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FIGURE 13. Mean-velocity profiles: 0 ,  experimental results by Patel & Head (1969) at  R - 2070, 
+ , the results of calculations in run 1 (RQ = 2037, R, = 5000, do = 1.25, /3,, = 2); curve 1 ,Qs = z+; 
2, U+ = 5.510g1, zf + 5.45. Here Ui = < V)s2//uT, z+ = zu,/v. 

. -0.5 

' -1 

FIGURE 14. Reynolds stress for the three-dimensional secondary flow at R, = 5000 (run 1). 

The comparison of mean-flow velocity in the three-dimensional secondary flows 
with the experimental data by Whan & Rothfus (1959) and Patel & Head (1969) is 
presented in figure 10. We may say that beyond all our expectation agreement 
between mean-velocity profiles is very good. For contrast the mean-velocity profile 
in two-dimensional secondary flow at R - 2952 (RP = 3500) is also plotted (curve 4). 

Figure 11 shows the mean-velocity profile ( flZy in three-dimensional secondary Q -- 



282 B. L. Rozhdestvensky and I .  N .  Sirnakin 

I 0.8 0.6 0.4 0.2 0 

FIGURE 15. (a)  Calculated distribution of the r.m.s. pulsation velocity components: curve 1, u ;  
2, v ;  3, w as the functions of z at R ,  = 5000, R, = max, (V), , /v = 1620 (run 2). (b) Experimental 
distribution of the r.m.s. pulsation velocity components: 0, u ;  0 ,  v ; + ,  w as functions of z a t  
R, = 3850 (Kreplin & Eckelmann 1979). 

flow (R, = 5000, RQ = 2037, a. = 1.25, Po = 2), the velocity profile in Poiseuille flow 
a t  R = R, = 5000, and the velocity profile in Poiseuille flow at R = R, = 2037.t In 
this figure for each problem formulation, i.e. for the flows with fixed flux (RQ = const) 
and for the flows with fixed R,, the typical relation between the profiles of the mean 

f Here we fix the viscosity u = 1/R, and the half-channel width L = 1. 
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-0.079 1 

-0.058i I 

FIGURE 16. Behaviour of each component of the disturbance velocity of three-dimensional 
secondary flow at R, = 5000 (run 2) over the time interval t = 1700-1950 a t  points {x = 0, y = in, 
z = zu, z,, zw}. The zeroth harmonic of the disturbance velocity is calculated as a deviation from 
the velocity in the Poiseuille flow at R = R, = 2023, and points zu, z,, z, are close to those in which 
the amplitudes of pulsation of u, v, w are maximal. 

velocity of the laminar and turbulent flows may be seen. In the experiments an 
analogous flattening of the mean-velocity profile is usually observed. 

Figure 12 shows the mean-disturbance-velocity profiles at  R, = 5000, which are 
obtained as the deviations from the velocity in Poiseuille flow at RQ. = 2037 for 
three-dimensional secondary flow and from the velocity in Poiseuille flow at 
RQ = 3616 (R, = 5000, run 5 ,  table 1) for two-dimensional secondary flow. We see 
that a ' three-humped ' mean-disturbance-velocity profile appears only in two- 
dimensional secondary flows. 

In figure 13 the mean-velocity profile in three-dimensional secondary flow a t  
R, = 5000 (Rs = 2037), the same as in figure 11, is plotted as a function of z+ = zu,/v. 
Here the results by Pate1 & Head (1969) at RQ = 2070 are also presented. Note the 
good agreement of the results of our computations with both experimental data and 
the 'universal wall law': U+ = z+ for z+ 5 10; U+ = 5.5l0g1,z++5.45 for z+ >, 30, 
where U+ = (V),,/u,. 

A plot of the Reynolds stress - (uw>,,/u,2 for three-dimensional secondary flow 
at R, = 5000 is presented in figure 14. The maximum of the Reynolds stress occurs 
near the channel walls, which agrees with the experiments. 

Figure 15 (a)  shows the distributions of the r.m.s. pulsation-velocity components 
(in wall units u,) versus z in three-dimensional secondary flow at R ,  = 5000 (run 2, 
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t = 2600 
1 

2 

-1 
X X 

0 X X 

0 Y Y 

FIGURE 17. Instantaneous streamlines of the projections of the averaged vector fields (V’),, 
(V’),, (V’), onto the planes y = const, z = const, z = const respectively. Here V‘ = I/- V,, 
V is the velocity field of the three-dimensional secondary flow a t  R, = 5000 (run 2), V, is the mean 
velocity of the flow. 
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R, = max, ( V),,/v = 1620). The nearest Reynolds number R, for which we were 
able to  find the experimental data on these distributions was R, = 3850 from Kreplin 
& Eckelmann (1979). We present the distributions of r.m.s. pulsation-velocity 
components from their work in figure 15(6). Comparison of figure 15(a) with 15(b)  
shows at least good qualitative agreement. 

The behaviour in time of each component of the velocity in the run 2 (RP = 5000) 
at points {x = 0, y = in, z = z,, z,, zw}  is presented in figure 16. These points z,, z,, z ,  
are close to those in which the amplitudes of pulsations of u, v, w are maximal. These 
graphs show that three-dimensional secondary flows are completely unlike time- 
periodic flows. 

For the three-dimensional secondary flow (run 2) instantaneous streamlines of 
vector-field projections (V' ) , ,  (V ' ) , ,  (I"), onto the planes y = const, z = const, 
x = const respectively are depicted in figure 17. Here ( V'),, ( V'),, ( V'),  denote the 
averagings of the velocity field V ( X ,  t )  = V ( X ,  t ) -  V,(z) with respect to coordinates 
y, z ,  x respectively; V is the velocity field of the three-dimensional secondary flow 
considered, 6 = ( V)s,. An elimination of the mean velocity V, makes i t  possible to 
show the detailsbf the considered averaged velocity fields. The projections presented 
give an idea of the eddies of the secondary flow. 

Some remarks on the accuracy of our computations of three-dimensional secondary 
flows are given in $5. 

5. Discussion and comparison of the results 
The secondary flows that we have obtained imply the instability of the Poiseuille 

flow to finite disturbances. Such a disturbance may be, for example, V ( X ,  t ) -  U,(z), 
where V and U, are respectively the velocity fields of the secondary flow a t  arbitrary 
moment of time t and of the Poiseuille flow. 

For the present we are interested mainly in the existence and properties of 
secondary flows as well as their relation to the turbulence. The conditions for passage 
of the flow to a secondary regime are of course also interesting, but here we pay less 
attention to them. 

First of all we note that in our investigations the quantities a, and Po are far from 
always being the wavenumbers of the unique mode of the initial disturbance, but 
X = 2x/a,, Y = 2n//3, are always the periodicity intervals of the secondary flow in 
homogeneous coordinates (x, y ) .  

In such an understanding of the functions of the parameters a, and Po the so-called 
'neutral *surface' in the theory of nonlinear stability will describe many more 
statistically stationary solutions of Navier-Stokes equations. I n  fact, any solution 
V(X,  t )  periodic in x with a period X = 2n/a, is also periodic in x with the periods 
X, = mX = 2n/aOm, aom = a,/m, m = 2 ,3 ,  . . . . Therefore, if the point (a,, Po) belongs 
to the neutral surface then all the points (a,,, Po,) must also belong to it. It is rather 
obvious, and our calculations confirm, that the solution V(X,  t )  mentioned above is 
unstable to periodic disturbances with the periods mX, nY.  As a result of the 
evolution of these long-wave disturbances we obtain another secondary flow at a,,, 
Po, which must also belong to the neutral surface. It seems to us that  this simple 
observation may be useful for the explanation of the existence of the long-wave 
secondary flows a t  the Reynolds numbers at which the short-wave secondary flows 
do not exist or are unstable. 

A secondary flow with the periods X = 2n/a0, Y = 27c/P0 can sometimes be 
obtained as a result of the evolution of the initial harmonic disturbance with the 
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wavenumbers a, and Po and sometimes cannot. Full elucidation of this question 
requires a great amount of computer time. Note that in the most part of works 
devoted to investigation of nonlinear stability of Poiseuille flow this question is also 
left without an  answer. 

The calculations of two-dimensional secondary flows performed on considerably 
large time intervals T - lo4 have not led to the passage of these flows to the 
time-periodic regimes. Nevertheless two-dimensional secondary flows are rather 
similar to the time-periodic ones, especially for a,, > 1 and large Reynolds numbers. 

Our main conclusion from two-dimensional computations is that  two-dimensional 
solutions Gf the Navier-Stokes equations can determine correctly neither the critical 
Reynolds number of transition to  turbulence nor very important parameters of 
turbulent flows. Such a conclusion is apparently in accordance with the modern point 
of view on this question. 

Some of our discrepancies with results by other authors in two-dimensional 
instability of plane Poiseuille flow are related to  the small ‘transition’ zone 
R, = 2700-3250, i.e. to the margin of the domain of the existence of two-dimensional 
secondary flows. Here we were not able to find a secondary flow with a, 2 1 ,  but 
have found them for a, 5 0.3. 

As an example we compare our results on two-dimensional secondary flows with 
those by Zahn et al. (1974). Their UB-solutions agree qualitatively and sometimes 
quantitatively rather well with our solutions except for the transition zone. Dis- 
crepancies of UB-solutions with our data for two-dimensional secondary flows are 
apparently explained by an insufficient accuracy of their simple one- and two-mode 
models. This is attested in particular by their own computations at R, = lo4, a, = 1. 
I n  their case I (one-mode model) the flow rate Q = 0.746, in case I1 (two-mode model) 
Q = 0.846. A passage from one to two modes leads to a more than 11 % change in 
the flow rate and about 22 % change in the drag coefficient. I n  our calculations a t  
the same parameters Q = 0.926. 

Further it is necessary to  give some critical comments on the papers by Orszag & 
Kells (1980) and Orszag & Patera (1980, 1981, 1983), since in the case of plane 
Poiseuille flow the purposes and even the methods of their and our investigations are 
rather close. They employed the effective numerical technique of Orszag & Kells, 
but in all their computations the integration times were very small: T < 150 and 
T < 75 for two- and three-dimensional cases respectively. Based on these short 
computations, Orszag & Kells made conclusions on the stability and instability of 
the plane Poiseuille flow. No secondary regimes of flow were obtained by them. Our 
repetitions and prolongations of all their ‘ successful ’ two-dimensional runs (i.e. the 
runs which by Orszag & Kells testify the instability of the Poiseuille flow) have led 
to  the opposite conclusion. I n  these runs we made use of their own numerical 
technique and had to increase the integration times by factors of 20-50. Further 
details on this question can be found in Rozhdestvensky & Simakin (1982b, c) .  

After this it was obvious that all three-dimensional computations by Orszag & Kells 
and Orszag & Patera had the same shortcoming, which may affect their conclusions 
on ‘breakdown to turbulence ’, turbulent mean-velocity profiles, etc. 

Thus the papers we know contain almost nothing that could be compared directly 
with our three-dimensional secondary flows. For this reason we confine ourselves only 
to comparisons of our three-dimensional results with the experimental data. 

Finally let us discuss the accuracy of our three-dimensional computations. First 
of all we have to say that the resolution in the z-direction is not too bad, and P = 32 
is large enough for the first computations. However the resolution in the x- and 
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Emn 

\n 0 1 2 3 4 
m\ 

0 2.148 x 10-1 2.399 x 2.034 x 5.283 x 6.490 x 
1 2.934 x 8.440 x 1.591 x 9.718 x 8.142 x 
2 2.259 x 4.806 x 3.846 x 3.744 x 3.167 x lop5 
3 1.699 x 3.444 x lop5 2.065 x 2.510 x 2.680 x 
4 8.897 x lop6 1.834 x 2.085 x 2.053 x 1.854 x 

TABLE 5. Values of the mode energies Em, at the end of the three-dimensional run 2 
( R p  = 5000, a, = 1.25, Do = 2) 

y-directions is far from being as good as in two-dimensional computations. With 
M = N = 4 all the 24 modes allowed in the representation of numerical solution 
corresponding to subscripts m, n (m2 + n2 $: 0) have among themselves comparable 
energies. In  table 5 are presented their energies a t  the end of run 2 (RP = 5000). The 
diminution of E m ,  for m = 4 and for n = 4 is roughly by factors of 0.3-0.1. These 
factors are better for run 4 (Po = 4). 

Thus the resolution in the x- and y-directions is insufficient, and, strictly speaking, 
this method of obtaining three-dimensional secondary flows with M = N = 4 may be 
called ‘the 24-mode model’. But it can be used for numerical computation of 
three-dimensional secondary flows if we increase M and N appreciably. This work 
is planned. 

Nevertheless, i t  is a fact that  this ‘24-mode model’ reflects the basic integral 
properties of turbulent flows rather well at moderately large Reynolds numbers, and 
we are sure that this is not fortuitous. Moreover i t  strengthens our conviction that 
among the infinite set of three-dimensional secondary flows (and, corresponding to 
them, solutions of the Navier-Stokes equations) there exist secondary flows that 
completely describe the real turbulent imcompressible fluid flows in the channels and 
pipes. 

The authors express their deep gratitude to  Academicians A. A. Samarsky , 
A. N. Tichonov and the late N. N. Yanenko for the essential support of this work. 
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